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SUMMARY

The accuracy and consistency of a new cell-vertex hybrid �nite element=volume scheme are investigated
for viscoelastic �ows. Finite element (FE) discretization is employed for the momentum and continuity
equation, with �nite volume (FV) applied to the constitutive law for stress. Here, the interest is to
explore the consequences of utilizing conventional cell-vertex methodology for an Oldroyd-B model
and to demonstrate resulting drawbacks in the presence of complex source terms on structured and
unstructured grids. Alternative strategies worthy of consideration are presented. It is demonstrated how
high-order accuracy may be achieved in steady state by respecting consistency in the formulation. Both
FE and FV spatial discretizations are embedded in the scheme, with FV triangular sub-cells referenced
within parent triangular �nite elements. Both model and complex �ow problems are selected to quantify
and assess accuracy, appealing to analysis and experimental validation. The test problem is that of steady
sink �ow, a pure extensional �ow, which re�ects some of the numerical di�culties involved in solving
more generalized viscoelastic �ows, where both source and �ux terms may contribute equally to stress
propagation. In addition, a complex transient �lament-stretching �ow is chosen to compute the evolution
of stress �elds within liquid bridges. Shortcomings of the various stress upwinding schemes are discussed
in this context, whilst dealing with such free-surface type problems. Here, stress �uctuation distribution
alone is advocated, and a Lax-scheme is found to deliver accuracy and stability to the computational
results, comparing well with the literature. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite volume (FV) high-resolution upwind methods for hyperbolic conservation laws and
their extensions have been the subject of intensive research for more than half a century, with
remarkable advances in the last two decades or so [1–12]. These methods have now reached
a stage of maturity and play a central role in numerical discretization of di�erential equation
systems. The FV approach may be viewed as a ‘method of moments’ FE formulation, with
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weighting functions taken as unity. Literature of relevance here falls into two categories,
those with complete FV implementations [2] and those of hybrid form [1, 9, 11, 12]. Early
numerical simulations for viscoelastic �uids were performed using FE Galerkin discretization
in conjunction with upwinding techniques (Streamline-unwinding, SU, streamline upwinding
Petrov–Galerkin, SUPG) [10, 13]. In the FV domain, considerable progress has been made
for pure advection equations [3, 8] and has su�ciently advanced to accommodate viscoelastic
�ows, where source terms may play a dominant role.
The contributions of Crumpton et al. [5], Struijs et al. [8] are worthy of mention. These

works have implemented cell-vertex FV formulations for compressible Navier–Stokes, Euler
and advection equations, respectively. On triangles, Berzins and Ware [7] concentrated on a
cell-centred FV approach. The distinction between cell-centred and cell-vertex schemes lies
in the level of auxiliary interpolation and the upwinding techniques appropriate for each. In
cell-centred methods, solution variables are positioned at the centroids of the control volume.
In contrast, cell-vertex methods use the mesh points to locate solution variables.
Sato and Richardson [9] employed a time-explicit FE-method on the momentum equa-

tion and time-implicit FV-method for pressure and stress, of cell-centred type. In order to
achieve high-order upwinding, a total variational diminishing �ux corrected transport (TVD-
FCT) schemes was applied to the advection terms of the constitutive equation. Darwish and
Whiteman [2] implemented a staggered grid-FV method, and Crumpton et al. [5] developed
a cell-vertex FV method on structured quadrilateral and hexahedral meshes for Navier–Stokes
equations.
Features of the current hybrid approach include a time-stepping procedure that combines

a �nite element discretization (semi-implicit second-order=pressure correction) for continuity
and momentum equations, with a cell-vertex �nite volume scheme for stress. This e�ective
combination is employed as a fractional-staged formulation within each time-step. An individ-
ual parent �nite element triangular cell is divided into four �nite-volume triangular sub-cells.
Interpolation on the parent-fe-cell is quadratic in velocity, linear in pressure. On the sub-cell,
interpolation is linear only. An important aspect of the discretization is that with stress vari-
ables located at the vertices of the �nite volume cells, no interpolation is required to recover
the �nite element nodal stress values.
Under fv-discretization and to date, various forms of �uctuation splitting schemes have

been considered, and their properties analysed [14]. In this regard, our prior studies have
established accuracy properties against analytical solutions for smooth �ows [14], and some
non-smooth �ows [1]. The relative strengths and weaknesses of various strategies for dealing
with �ux and source terms have been identi�ed. In the above cases, the hybrid FE=FV scheme
is found to produce second-order accurate and e�cient solutions to viscoelastic �ows. There
is reduction in loss of accuracy (by up to one order) with the hybrid FE=FV form compared
to the FE=SUPG scheme. Compared to the FE=SUPG method, the hybrid FE=FV alternative
requires smaller time steps, less iterations and less CPU time per iteration. These advantages
o�er the possibility of improved e�ciency for larger problems with this hybrid FE=FV scheme.
In the present study, our attention is focused mainly on the contrast between consistent and

inconsistent treatments for source and �ux terms within cell-vertex �nite volume formulations.
Consistent and inconsistent schemes are compared in our precursor work on model problems.
The inconsistent approach provides inaccurate results, even for simple model problems. This
has been demonstrated on channel �ow, for example, where such schemes have been shown
to lack stability [14]. The consistent approach has performed well in terms of stability. It has
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provided second-order accuracy for steady-state model problems. In contrast, here a model
sink �ow problem is chosen to quantify accuracy and consistency, addressing both structured
and unstructured meshing. Once, this is established, the proposed hybrid FE=FV method is
employed on a complex viscoelastic �ow with free-surface. The drawbacks of various FV
implementations are discussed. Here, speci�cally we address �lament-stretching for viscoelas-
tic �uids, focusing upon constant shear-viscosity �uid properties. It is appropriate to consider
�uid representation through the Oldroyd-B model [27], for which we adopt a high-polymeric
viscosity contribution. Here, we discuss the break-up of viscoelastic liquid-bridges under elon-
gation, where the stretching of the liquid-bridge is con�ned between two end-plates. Such a
setting may be used in rheometry to measure the elongational viscosity of a �uid [15]. Over
the preceding decade, much interest has been expressed in the area of extensional rheology
for polymer solutions [16–19]. In this regard, the �lament-stretching rheometer, introduced
by Tritaatmadja and Sridhar [15], has proved to be a useful experimental tool. The primary
goal of these studies has been to determine the nature of deformation in the central portion
of the �lament. This detects if the �ow approaches ideal uniaxial elongation and leads to the
observation of rheological properties, that either enhance or restrain ideal uniaxial deformation.
Finite element simulations for viscous and viscoelastic �uids within �lament-stretching �ows

have been performed extensively in the literature, see References [16–19]. A detailed literature
review on this problem is presented in our precursor work [20]. While employing the full FE
scheme (FE=SUPG), to solve this complex problem, �zz decreases with time sustaining negative
solution values. Here, no contribution (in the weighting function) is made to the nodes in the
free-surface region, due to the inward pointing direction of the velocity. In contrast, the hybrid
FE=FV Lax–Wendro� scheme has furnished comparable results with those from the literature.
In this work, we propose the appropriate �nite volume scheme to be employed to model such
complex �ow problems. We illustrate the di�erences between �uctuation distribution and
median-dual-cell constructs, within a cell-vertex discretization on structured and unstructured
triangular meshes. Also, various �uctuation distribution schemes, namely, Ldb, Psi and
Lax–Wendro�, are contrasted in this study.

2. GOVERNING EQUATIONS

The governing equations for incompressible, viscoelastic �ows are represented by conservation
laws for mass and momentum, in conjunction with an equation of state for stress. Posed
in non-dimensional form, the balance equations under isothermal �ow conditions may be
expressed as

∇:u = 0 (1)

Re
@u
@t
= −Re u:∇u − ∇p+∇:

(
2
�s
�0
d+ �

)
(2)

and the constitutive equation for an Oldroyd-B �uid may be expressed as

We
@�
@t
= −Weu:∇�− �+ 2 �e

�0
d+We(L:�+ �:L†) (3)
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where u; p; � represent the �uid velocity, the hydrodynamic pressure and the extra-stress tensor.
The total viscosity �0 is split into solvent (�s) and polymeric (�e) contributions, such that
�0 =�s + �e; d=(L + L†)=2 represents the Euler rate-of-deformation tensor and L†=∇:u,
the velocity gradient. The non-dimensional variables, namely, velocity, pressure, length, stress
and time may be expressed as

u∗=
u
U

; p∗=
L

�0U
p; x∗=

x
L
; �∗=

L
�0U

�; �∗=
�
�0

; t∗= t
L
U

(4)

The Reynolds and Weissenberg numbers are de�ned as

Re=
�UL
�0

; We=
�U
L

(5)

where �, � are the �uid density and relaxation time and U , L are characteristic velocity and
length scale of the �ow. The zero shear-rate viscosity (constant) is taken as the characteristic
scale for viscosity.

3. THE HYBRID FINITE ELEMENT=FINITE VOLUME METHOD

The �nite element grid is used as a platform for the �nite volume grid, from which control
volumes are constructed. Each FV cell is a sub-triangle resulting from a parent FE cell, see
Figure 1(a). The unique subtended median-dual-cell zone (mdc), around a particular node l,
surrounded by FV sub-cells T , is illustrated in Figure 1(b). The six-noded parent FE cell is
based on a triangular cell with three vertices and three mid-side nodes. Velocity interpolation
is achieved via quadratic shape functions, using the six nodal values, and the pressure by
linear functions based upon the vertices alone. The stresses are computed on the vertices of
the FV cells as outlined below.

(RT,QT)

iα

i 

k 
j

T

ljαkα

(a) (b)

Figure 1. (a) FE with four FV sub-cells; and (b) mdc area for node l.
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First, we recast the stress constitutive equation (3) in conservative form,

@�
@t
+∇:R=Q (6)

where the �ux R and source Q can be de�ned as

R= u� (7)

Q =
1
We

(
2
�e
�0
d − �+ (L:�+ �:L†)

)
(8)

Velocity gradients are represented via recovery procedures [13]. It is common practice to refer
to a single scalar component � of stress, with correspondence in �ux and source terms. In the
presence of source terms, the standard treatment advocate widely in the literature consists in
dealing separately with the �ux and source terms (inconsistent approach). Here, in contrast, a
new formulation is proposed, whereby both �ux and source terms are evaluated in a consistent
manner.

3.1. Inconsistent fv-nodal update

Here, the �uxes are distributed using �T
l -FD coe�cients on the whole FV cell area, whereas

the control volume for the source term, the mdc, is one-third that of the FV cell area. Hence,
this formulation is inconsistent, both in respect of control volume usage and reference to
�T
l -FD coe�cients.

∧
�l

�n+1l − �nl
�t

= �T
l RT +Qmdc (9)

where RT is the integral of the �ux (R) over triangle T (see Equations (26) and (27)),
and Qmdc is the source associated with node l taken over the area of the surrounding mdc,
(Qmdc =

∫
�mdc

Q d�mdc), respectively. Here, the Ldb scheme is employed for the evaluation of
�T
l -FD coe�cients.

3.2. Consistent fv-nodal update

Here, both �uxes are sources are distributed alike using �T
l -FD coe�cients on the whole FV

cell area,

∧
�l

�n+1l − �nl
�t

=
∑
∀T

�T
l (RT +QT ) (10)

The notation
∑

∀T , represents summation over contribution from all FV-cells (T ) surrounding

node l, and
∧
�l the area of the median dual cell (mdc) associated with node l. In addition, we

have FD-factors �T
l , temporal stress �Tl at node l, and {�ux RT , source QT} contributions on

FV-triangle, T (QT =
∫
�T

Q d�T ). Here, both Ldb and Psi schemes are used for the evaluation
of �T

l -FD coe�cients. The scheme following stencil (10) is consistent both in �T
l -FD coe�cient

application and control volume.
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3.2.1. Hybrid combinations. Results are obtained by switching �ux and source term treatment
between Ldb and Psi schemes, to determine the in�uence of positivity upon the computations,
and in particular its consistent application to �ux terms. This is achieved through stencils of:

∧
�l

�n+1l − �nl
�t

= �T
l(Ldb)RT + �T

l(Psi)QT (11)

∧
�l

�n+1l − �nl
�t

= �T
l(Psi)RT + �T

l(Ldb)QT (12)

3.2.2. Median dual cell considerations. In order to retain stability at high We numbers,
Aboubacar and Webster [11] and Webster et al. [12], improved the consistent approach
(Equation (10)) by appealing to median dual cell contributions. Summing over all fv-subcells
surrounding node l yields the CT3-scheme, provides a generalized stencil:

��n+1l

�t
=

∑
∀Tl

�T�T
l bTl

�1︸ ︷︷ ︸
FD

+

∑
∀mdcl �

T
mdc�

T
mdcb

l
mdc

�2︸ ︷︷ ︸
mdc

(13)

where bTl =(RT+QT ), bl
mdc = (Rmdc+Qmdc)l, and appealing to �FD =

∑
Tl

�T�T
l �Tl , and �mdc =∑

mdcl �
T
mdc�

Tl
l . Theoretically, �T and �mdc are mutually linked and complementarily exclusive.

Blending FD and mdc contributions with parameters �T and �mdc provides various alternative
scheme combinations (CT0, CT2, CT3 see References [11, 12]). These may be categorized in
a generalized manner, around area weighting factors �1 and �2, and blending parameters, �T ,
and �mdc. We obtain the CT3-scheme by setting �1 =�2 ≡�FD + �mdc; alternatively, we can
recover the CT2-scheme with the combination �1 =�FD and �2 =�mdc; the original nodal-
update (CT0) corresponds to �1 =�2 ≡ �̂l.
Fluctuation distribution coe�cients �T

l , may be provided via an appropriate choice of
scheme, for example, Ldb or Psi. Both such options o�er second-order accuracy at steady
state. Wapperom and Webster [1], recommended setting of blending factors as �T =� and
�mdc =1, with �= �=3 if |�63| and 1 otherwise. Here, �=We (a=h), with a the magnitude
of an advection velocity per FV-cell and h the square-root of the area of the FV-cell in
question. With the above parameter combinations (so �mdc =1), both CT2 and CT0 variants
proved inadequate in tracking transient solution evolution in a start-up planar Poiseuille �ow.
In particular, the CT2-scheme was sensitive to the setting of �mdc. There, signi�cant improve-
ment in transient accuracy was achieved with the CT2-scheme by appealing to a dynamic �mdc
factor setting in the form, �mdc =1−�T . In contrast, the CT3-scheme was relatively insensitive
to �mdc setting, as it encompasses consistent treatment of control-volumes for �ux and source
terms on the r.h.s., and consistent area-weighting for time-terms on the l.h.s. of the equation.
Hence, this is the preferred option of choice.

4. NUMERICAL ALGORITHM

We outline the structure of the FE scheme, and point to the hybrid FE=FV options in contrast,
referring to Matallah et al. [13] and Wapperom and Webster [1] for detailed discussion. The

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:945–971



CONSISTENT HYBRID FINITE VOLUME=ELEMENT FORMULATIONS 951

general framework is a time-splitting semi-implicit formulation, involving two distinct aspects:
a Taylor–Galerkin scheme and a pressure-correction scheme. The Taylor–Galerkin scheme is
a two-step Lax–Wendro� time stepping procedure, extracted via a Taylor series expansion
in time [13]. The pressure-correction method accommodates the incompressibility constraint
to ensure second-order accuracy in time, with pressure-splitting factor 	= 1

2 . A three-stage
structure emerges per time step, that may be expressed in semi-discrete form

Stage 1a :
2Re
�t

(U n+(1=2) −U n)= [∇:(2�2D+ T)− ReU :∇U − ∇p]n

2We
�t

(Tn+(1=2) − Tn)= [2�1D − T − We{U :∇T − T :∇U − (T :∇U)+}]n

Stage 1a :
Re
�t
(U∗ −U n)= [∇:T − ReU :∇U ]n+(1=2) + [∇:(2�1D)− ∇p]n

We
�t
(Tn+1 − Tn+(1=2))= [2�1D − T − We{U :∇T − T :∇U

− (T :∇U)+}]n+(1=2)

Stage 2 : ∇2(pn+1 − pn)=
Re
	�t

∇:U∗

Stage 3 :
2Re
�t

(U n+1 −U∗)= − 	∇(pn+1 − pn)

(14a)

Upon spatial discretization, the above stages may be expressed as

Stage 1a : Aa
u(U

n+(1=2) −U n)= ba
u(p

n;U n;Tn;Dn)

2
�t

A�(Tn+(1=2) − Tn)= b�(U n;Tn;Dn)

Stage 1b : Ab
u(U

∗ −U n)= bb
u(p

n;U n;U n+(1=2);Tn+(1=2);Dn+(1=2))

1
�t

A�(Tn+1 − Tn)= b�(U n+(1=2);Tn+(1=2);Dn+(1=2))

Stage 2 : A2(pn+1 − pn)= b2(U∗)

Stage 3 : A3(U n+1 −U∗)= b3(pn; pn+1)

(14b)

where

Aa
u =

2Re
�t

M +
�2
2

S; ba
u= {F1 − [�2S + ReN (U)]U − B1T + LTP}n

Ab
u =

Re
�t

M +
�2
2

S; bb
u= {F1 − [ReN (U)]U − B1T}n+(1=2) + (LTP + �2S)n

A2 =K; b2 =
Re
	�t

LU∗; A3 =
2Re
�t

M; and b3 = − 	LT (Pn+1 − Pn)
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Above, M , S, and N (U) represent the consistent mass-matrix, the di�usion matrix and the
advection matrix, respectively (D is represented via the di�usion matrix S). Throughout the
problem domain �, these matrices are expressed as

Mij =
∫
�

i
j d�; N (U)ij=

∫
�

i(
lUl)∇
j d�

(S11)ij =
∫
�

{
2
@
i

@r
@
j

@r
+

@
i

@z
@
j

@z
+
2
r

i
j

}
d�

(S12)ij = (S21)ij=
∫
�

{
@
i

@z
@
j

@r

}
d�

(S22)ij =
∫
�

{
2
@
i

@z
@
j

@z
+

@
i

@r
@
j

@r

}
d�

(S33)ij =
∫
�

{

i
j

r

}
d�; where d�= r dr dz

(15)

The pressure sti�ness matrix, K , and remaining matrices adopt forms

Kij=
∫
�

∇ i∇ j d�; (Lk)ij=
∫
�
 i

@
j

@xk
d�; (B1)ij=

∫
�

∇
i
j d� (16)

Here the notation implies, superscript n denoting the time level, �t the time step and U , U∗,
P, T , D the nodal values of velocity, non-solenoidal velocity, pressure, extra-stress and ve-
locity gradient, respectively. AU , A2, A3 are the standard velocity, sti�ness and mass matrices.
The precise form of A� and b� varies according to the implementation, and is detailed in Sec-
tion 3. Galerkin spatial FE discretization is employed within the momentum equation in stage
1, the pressure-correction in stage 2 and the incompressibility constraint in stage 3. The di�u-
sive terms in Equation (3) are treated in a semi-implicit manner in order to enhance stability.
The resulting Galerkin mass matrix–vector equations at stages 1 and 3 are solved using an
element-by-element Jacobi scheme. The required levels of convergence are attained with only
a few Jacobi iterations. A direct Choleski decomposition procedure is invoked to handle
stage 2.
The �nite volume approach adopted in this work, and applied to stress alone, is of cell-

vertex orientation. Cell-vertex schemes, generally maintain their accuracy for broader families
of unstructured meshes [21]. The core of these cell-vertex FV schemes is associated with
the dictates of �uctuation distribution (FD), governed by FD-coe�cients {�T

l }l= 1;3 on tri-
angular control-volume T ; see Reference [3]. These schemes are compact-stencil upwinding
techniques. More detail, on the theory and construction of such upwinding schemes, can be
found in [3]. They require only the vertices of a triangular cell to evaluate the solution of a
given scalar �eld. The FD-schemes di�er based on the appropriate discretization choices for
pure advection equation, and upon properties such as conservation, linearity preservation and
positivity.

4.1. Fluctuation distribution schemes

Fluctuation distribution schemes can be categorised into those of linear and non-linear types.
Both linear and non-linear upwind distribution schemes on unstructured triangular meshes
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have been developed over the past years, with built-in properties such as positivity (P) and
linearity preservation (LP). Linear schemes can be either P or LP. For both properties to
hold, the scheme must be of non-linear form.

4.1.1. Ldb scheme. This is a linearity-preserving (non-positive) scheme de�ned on each
triangle by the angle �‡

i subtended at an in�ow vertex by the advection velocity a (an aver-
age vector per cell). The Ldb distribution coe�cients �T

l , de�ned per cell node i, may be
expressed as

�i = (sin �1 cos �2)= sin(�1 + �2)

�j = (sin �2 cos �1)= sin(�1 + �2)

�k =0

(17)

We point out that the closer the advection velocity a is to being parallel to one of the cell
boundaries, the larger the contribution to the downstream node at that boundary.

4.1.2. Psi scheme. This scheme is non-linear and possesses both positive and linearity pre-
serving characteristics. It is equivalent to the N-scheme with a minmod limiter [8]. The
N-scheme is a linear �-scheme, which is positive. It is optimal in the sense that it may use
the maximum allowable time-step and the narrowest stencil. The resulting �i coe�cients of
the N-scheme, for the case of two in�ow sides are:

�i =−ki(
i − 
k)

�j =−kj(
i − 
k)

�k =0

(18)

where, coe�cients k may be expressed as

kl=
1
2
a:nl ;

3∑
l=1
nl =0;

3∑
l=1

kl=0 (19)

If we denote the coe�cients of the PSI scheme by �∗
l and of the N-scheme by �l, as in

Equation (18), the PSI scheme only deviates from the N-scheme if �i�j¡0, and we have

�∗
i = �i − L(�i;−�j)

�∗
j = �j − L(�j;−�j)

(20)

Here, L(x,y) is the minmod limiter function, de�ned via the conventional ‘sign’ operator,

L(x; y)= 1
4(1 + sign(xy))(sign(x) + sign(y))min(|x|; |y|) (21)

‡ The equivalent area-weighted version is called LDA-scheme.
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4.1.3. Lax–Wendro� (Lax) scheme. This scheme is second order and linear, satisfying
linearity-preservation. It is spatially-centred and second-order accurate in space. In addition, it
contains a dissipation term designed to control oscillations in the neighbourhood of discontinu-
ities, thus conferring second-order accuracy in time also. For the Lax-scheme, the distribution
coe�cients �T

l may be expressed as

�T
l =

1
3
+
�t
4�T

a:nTl (22)

where �t is a time-step size, a is an averaged advection velocity and nT
l is a scaled inward-

pointing normal vector to an edge of triangle T , opposing node l.
In the current work, we have studied two di�erent viscoelastic �ow problems. A model

steady problem of sink �ow is chosen to analyse consistency and accuracy of the proposed
scheme alternatives. In addition, to validate accuracy under more severe settings, a complex
problem is investigated, that is, the transient free-surface �lament stretching �ow. Here, tem-
poral as well as spatial issues must be resolved.

5. SINK FLOW PROBLEM

A steady sink �ow problem [22] is solved in two dimensions in the r-z plane for an Oldroyd-B
�uid. This represents radial sink �ow, from the outer radius r=R0 to the inner radius r=Ri,
with radial velocity component given by Ur = − (k=r) and velocity gradient @Ur=@r= k=r2,
for constant k (see Figure 2). The dominant stress component �rr in this �ow is determined
numerically on the basis of frozen kinematics. We adopt a Weissenberg number We=0:1,
and polymeric to total-viscosity ratio as �e=�0 = 8

9 . The results obtained are compared with an
analytic solution (see Reference [22]):

�rr =
�e
�y
(1 + Crey) (23)

z

r

r=R i

r=R

=-k/r

o

z=Z z=Z0 L
u r

Figure 2. Schematic diagram of two-dimensional sink �ow.
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where

y=
r2

2k�
(24)

Cr =
(
rr

�Y0
�e

− 1
)
e−y0 (25)

Here,  is the prescribed stress at the outer boundary R0; Y0 =y(R0).
For this model problem, consistency of FV-treatment across source and �ux terms is fore-

most. Calculations are performed on triangular elements on both structured and unstructured
meshes in order to investigate situations with di�erent in�ow sides. Through mesh re�nement
and calibration against an analytical solution, orders of accuracy are established for the various
FV-schemes outlined above.
The parameters chosen for this �ow problem are: outer radius R0 = 2, inner radius Ri=1 and

k=2, implying an inlet velocity Ur = − 1 at R0 and outlet velocity Ur = − 2 at Ri. The axial
co-ordinates are taken as Z0 = 1 and Zl=2. Limiting tolerance to detect convergence is taken
as 10−8. The time-step used, is �t=0:01 for 5× 5, 10× 10 and 10× 5 meshes, �t=0:005
for 20× 5 and 20× 20, and for 40× 5 and 40× 10 meshes �t=0:0025. The in�nity norm
��= ‖�h−�exact‖∞, scaled by a maximum value of the exact solution, is reported for compari-
son of solutions. To reduce some of the degrees of complexity in the problem, we have chosen
to freeze velocity (with analytic gradient) and pressure �elds (linearization=localization), so
that unequivocally, we may concentrate on accuracy of FV-stress representation (see also,
Reference [1]). Boundary conditions for the stress are speci�ed on the in�ow boundaries
r=R0. For the time-stepping procedure initial conditions are taken as a quiescent state, by
default. We note that,  (R0) may be set assuming fully-relaxed stress at in�nite distance
from the sink.

5.1. Results for sink �ow

Within the tables of results, we chart the relative di�erence between analytic and numerical
solution, in the in�nity norm, on the principle stress component �rr , over a range of meshes.
In this study, the resultant RT is evaluated in two di�erent forms, either as a boundary integral
around �T , as standard,

RT =
∮
�T

R:n d�T (26)

or, as an area integral,

RT =
∫
�T

u:∇� d� (27)

These results demonstrate the trends with mesh re�nement of the various scheme choices.
This provides insight into accuracy attainment for each scheme, that re�ects, their spatial
convergence rates, reported in terms of O(hp). We take results in order of structured meshes
(see Figure 3), prior to unstructured (see Figure 4). In each instance, we can explore the
in�uence that consistency of implementation has on accuracy. Here, scheme-S1, represents a
cell-boundary integral approach, scheme-S2, boundary integral with �xed stress on the bound-
aries, and scheme-S3, an area integral procedure.
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(a) (b)

  

(c) (d) 

Figure 3. Structured meshes: (a) 5× 5; (b) 10× 5; (c) 20× 5; and (d) 40× 5.

5.1.1. Structured mesh solutions. In Figures 5(a)–5(b) and Table I, we compare the consis-
tent (Equation (10)) and inconsistent (Equation (9)) FV formulations. With this set of results,
there is only one-in�ow side per FV-cell, so that only one node of a triangle will receive an
update. This employs therefore a simplistic upwinding treatment. First, we consider scheme-
S1, with boundary integral approximation for �ux terms. Convergence rates for the consistent
implementation are O(h1:5) on average, with �ner-mesh local-rates tending to p=1:1. The in-
consistent counterpart (re�ecting the standard version frequently cited in the literature), fairs
only slightly less well on average, O(h1:2), and closely matches �ndings on �ner meshes. So
here, there is not much to choose between these two options, both being around �rst order
in accuracy. The level of error itself is signi�cantly larger with the inconsistent case: by as
mush as a factor of four on the �nest mesh.
If a uniform �uctuation distribution is adopted, that countermands upwinding with �T

l =1=3,
then similar �ndings emerge. Here, it is apparent that an mdc treatment of sources is equivalent
to a consistent �uctuation distribution approach with uniform coe�cients. This is the key to
appreciate that accuracy is in�uenced by other factors than the distribution coe�cients alone.
Generally, with structured meshes, it is observed that through �uctuation distribution, interior
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(a) (b)

 

(c) (d)

Figure 4. Unstructured meshes: (a) 5× 5; (b) 10× 10; (c) 20× 20; and (d) 40× 40.

Table I. ‖��rr‖∞ data, structured meshes, consistent versus inconsistent schemes.

Method=mesh Consistent Inconsistent

S1 5× 5 0:25× 10−1 0:65× 10−1

10× 5 0:99× 10−2 0:35× 10−1

20× 5 0:50× 10−2 0:19× 10−1

40× 5 0:25× 10−2 0:95× 10−2

S2 5× 5 0:75× 10−2 0:28× 10−1

10× 5 0:17× 10−2 0:17× 10−1

20× 5 0:42× 10−3 0:97× 10−2

40× 5 0:10× 10−3 0:52× 10−2

S3 5× 5 0:32× 10−1 0:62× 10−1

10× 5 0:92× 10−2 0:37× 10−1

20× 5 0:26× 10−2 0:23× 10−1

40× 5 0:39× 10−3 0:13× 10−1
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Figure 5. ��rr h-convergence plots for Oldroyd-B; structured meshes: (a) consistent treatment; (b) in-
consistent treatment, �ux and source, unstructured meshes; (c) consistent treatment; and (d) inconsistent

treatment, �ux and source.
∫
� →S1;

∫
� ��xed →S2;

∫
� →S3.

nodes acquire contributions from an even number of triangles; alternatively, boundary nodes
are updated from a single triangle. Therefore, we include results based upon a �xed-stress
boundary condition setting, scheme-S2, which always has the e�ect of reduction in level of
error on any �xed meshing choice. With the consistent implementation, we are now able to
attain second-order accuracy with mesh re�nement, and almost third-order on average. It is
apparent, one is losing one order of accuracy here due to the boundary condition issue and
lack of balance in the nodal updates with uniform meshing. For the inconsistent counterpart of
scheme-S2, �rst-order accuracy is attained. This is due solely to the inconsistency of treatment
between �ux (FD) and source terms (on mdc).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:945–971



CONSISTENT HYBRID FINITE VOLUME=ELEMENT FORMULATIONS 959

Table II. ‖��rr‖∞ data: unstructured meshes, consistent versus inconsistent schemes.

Method=mesh Consistent Inconsistent

S1 5× 5 0:25× 10−1 0:66× 10−1

10× 10 0:79× 10−2 0:38× 10−1

20× 20 0:25× 10−2 0:28× 10−1

40× 40 0:74× 10−3 0:15× 10−1

S2 5× 5 0:53× 10−2 0:37× 10−1

10× 5 0:14× 10−2 0:25× 10−1

20× 5 0:54× 10−3 0:14× 10−1

40× 5 0:29× 10−3 0:77× 10−2

S3 5× 5 0:26× 10−1 0:68× 10−1

10× 5 0:66× 10−2 0:50× 10−1

20× 5 0:30× 10−2 0:60× 10−1

40× 5 0:71× 10−3 0.1409

Another aspect that may have a bearing on accuracy is the discrete evaluation of �ux, in
boundary integral form, and source terms, by area integration. From empirical evidence, it
would appear that a close approximation to �ux values is gathered at mid-side nodes, whilst
sources are well represented at centroid locations. This has lead to the testing of scheme-S3.
There instead, �uxes are taken as area integrals, a non-conservative representation of the con-
vected term. In consistent form, the average estimate error slope of almost O(h3) is extracted,
with mesh re�nement, see Figures 5(a)–5(b). Clearly, this equates to optimal scheme choice.
Fixing stress boundary conditions could well improve matters further. However, for general
problems, this may not always be plausible. Notably, oncemore the inconsistent counterpart to
scheme-S3, is restricted to only �rst-order accuracy: it is the inconsistency that is responsible
for this restriction.

5.1.2. Unstructured mesh solutions. On unstructured meshes and for this model problem,
there may be more than one in�ow side. Hence, the �uctuation distribution coe�cients will
vary and nodal updates, by upwinding design, will be distributed to more than one node of
each triangle. In this context, considering Ldb as the default, it is meaningful to contrast
di�erent �uctuation distribution schemes. In addition, mesh areas will di�er from one triangle
to another and the number of triangles sharing a node will vary. Hence, nodes throughout
the mesh will not be updated in a uniform manner. The results for unstructured meshes are
presented in Figures 5(c)–5(d) and Table II.
The main observation that is prominent with unstructured meshes is, there is an order of

accuracy lost, in shifting from consistent to inconsistent implementations. Hence, consistency
is a dominant issue. Otherwise, there is little to choose between the schemes on average
convergence performance, being around O(h1:7) for consistent and O(h0:7) for inconsistent
cases. The exception to the rule is the inconsistent area integral �ux evaluation of scheme-S3,
that loses h-convergence consistency altogether. Notably, consistent schemes, S1 and S3, both
tend to around second-order accuracy with mesh re�nement. Also, the in�uence of upwinding
in the departure from structured meshes, has most impact upon consistent scheme S1. Here,
this is the only instance where there is improvement in order of accuracy with mesh re�nement,
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Table III. ‖��rr‖∞ data: unstructured meshes, consistent, Ldb versus Psi.

Method=mesh Consistent (Ldb) Consistent (Psi)

S1 5× 5 0:25× 10−1 0:24× 10−1

10× 10 0:79× 10−2 0:78× 10−2

20× 20 0:25× 10−2 0:25× 10−2

40× 40 0:74× 10−3 0:74× 10−3

S2 5× 5 0:53× 10−2 0:52× 10−2

10× 5 0:14× 10−2 0:14× 10−2

20× 5 0:54× 10−3 0:54× 10−3

40× 5 0:29× 10−3 0:29× 10−3

S3 5× 5 0:26× 10−1 0:26× 10−1

10× 5 0:66× 10−2 0:68× 10−2

20× 5 0:30× 10−2 0:31× 10−2

40× 5 0:71× 10−3 0:72× 10−3

Table IV. ‖��rr‖∞ data: unstructured meshes, consistent versus inconsistent, Ldb, Psi.

Method=mesh �l(psi)R+ �l(ldb)Q �l(ldb)R+ �l(psi)Q

S1 5× 5 0:25× 10−1 0:26× 10−1

10× 10 0:73× 10−2 0.15
20× 20 0:22× 10−2 0.11
40× 40 0:61× 10−3 0.11

S2 5× 5 0:53× 10−2 0:72× 10−2

10× 5 0:11× 10−2 0:29× 10+1
20× 5 0:50× 10−3 0.12
40× 5 0:21× 10−3 0.10

S3 5× 5 0:26× 10−1 0:14× 10+1
10× 5 0:44× 10−2 0:18× 10+1
20× 5 0:26× 10−2 0:41× 10+1
40× 5 0:61× 10−3 0:55× 10+1

from O(h1:1) for structured, to O(h1:8) on unstructured meshes. Interestingly, a choice of
uniform �uctuation distribution coe�cients with �T

l =1=3, gives almost identical convergence
properties to scheme S1 (the default choice henceforth). This leads one to appreciate that it
is the distribution to more than one node that is the critical factor here.
In Table III, the point of attention shifts to the treatment of �ux and source terms in

respect of �uctuation-distribution schemes. Switching the consistent formulation (10) from
Ldb scheme to Psi, we observed an identical error norm slope, to that obtained for the
Ldb consistent scheme, see Figures 6(a) and 6(b) with S1. Further, for the evaluation of �l

FD coe�cient, we used the Psi scheme for the �ux term and Ldb scheme for the source
term (Equation (12)). The convergence rate is improved slightly with mesh re�nement; see
Table IV. This improvement in convergence rate is due to the suitability of the particular
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Figure 6. ��rr h-convergence plots for Oldroyd-B: unstructured meshes: (a) �T
l(Psi)(RT + QT );

(b) �T
l(Psi)RT + �T

l(Ldb)QT ; and (c) �T
l(Ldb)RT + �T

l(Psi)QT
∫
� →S1;

∫
� ��xed →S2;

∫
� →S3.

scheme chosen for each term. The inherited properties of positivity and linearity preserving
from the Psi scheme, and linearity preserving property of the Ldb scheme, together retain
solution smoothness in temporal (iterative) convergence to steady-state. They do not generate
oscillations in the solution, on either coarse or re�ned meshes, see Figures 7(a)–7(d) with S1,
Ldb and Psi annotation. In contrast, when �ux terms are computed with the Ldb scheme and
source terms with the Psi (positive) scheme (Equation (11)), Figure 6(c) re�ects a negative
error slope for all schemes, S1–S3, (see Table IV). This is in keeping with expectation, due to
the positivity of the Psi scheme, which may introduce fresh extrema in the solution, on both
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Figure 7. �rr line plots, unstructured meshes; sampling inlet boundary-node (r=1:8; z=0:9): (a) 5× 5
mesh; (b) 40× 40 mesh; sampling central-node (r=1:5; z=0:5); (c) 5× 5 mesh; and (d) 40× 40 mesh,

—— PsiLdb; – – – LdbPsi; — — Ldb; - - - - - - - Psi.

coarse and re�ned meshes (see again, Figures 7(a)–7(d)). Here, under FD-approximation,
positivity imposed on source terms (denoted by LdbPsi), degrades solution accuracy. When
the Psi scheme is switched onto the �ux only, and source retains Ldb treatment (denoted by
PsiLdb), this position is recti�ed. PsiLdb results re�ect the smooth time-development of Psi
alone.

6. FILAMENT STRETCHING FLOW

In this second section of the study, we consider a complex transient �ow with free-surfaces,
that described by the extensional deformation of a viscoelastic �lament between two coaxial
discs. The bottom plate is held �xed and the top-plate is driven in time at an exponential
rate providing a constant extension-rate at the �lament centre, see Figure 8. It is assumed
that inertia and gravity are negligible. The top moving-plate may be set into motion at an
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Figure 8. Domain of �lament, full-length model with boundary conditions.

exponential rate, so that the dynamic �lament-length, LP(t), may be represented via

Lp(t) = L0e
:
·
�0 t (28)

dLp(t)
dt

= L0
·
�0 e

·
�0 t (29)

where
:
�0 is an imposed initial stretch-rate and L0 is the initial length of the �lament. The

initial aspect ratio of the liquid-bridge is de�ned as ∧0 =L0=R0, where R0 is the initial radius.
Here, we have selected ∧0 = 1=3. During elongation, the transient aspect ratio of the liquid
bridge may be expressed as ∧0(t)=Lp(t)=R0. Material parameters are given as: � (density) =
890kg m−3,

:
�0 (stretch-rate) =1:6s−1, L0 (initial length) =1:0× 10−3m, R0 (initial radius) =

3:0× 10−3m, � (surface tension coe�cient) =28:9× 10−3Nm−1, �0 (zero shear viscosity) =
98 Pa s.
A rectangular mesh of 20× 100 elements, with 8025 nodes and 4000 triangular elements is

used to perform the numerical simulation. We choose to scale, length and time, with initial
�lament length L0 and initial stretch-rate

:
�0, respectively. Stress and pressure are scaled by

�0
:
�0. In addition, we take Weissenberg number, We=4, where now the characteristic velocity,

U =
:
�0 L0, and We=De= �1

:
�0 and �1 = 2:54 see Reference [19].
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The motivation in this part of the study is to advance this hybrid FE=FV methodology
and apply the same to complex �ow settings. This problem presents a number of challenging
aspects including those arising in highly deformed, moving boundary, free-surface transient
viscoelastic �ows. We establish a favoured fractional-staged solution approach for this �ow
regime, considering various stress �nite volume combinations, namely, inconsistent and con-
sistent FV schemes, pure and hybrid FD-forms (Equations (10)–(12)), and with mdc-inclusion
(Equation (13)).
Free-surface computation
The boundary conditions and geometric domain considered within the modeling are illus-

trated in Figure 8. In addition, initial conditions are taken as quiescent, with exception of on
the moving plate, where the initial velocity is taken as V0 = (L0�0). Dirichlet type boundary
conditions are imposed on the known parts of the boundary. Continuity of normal and tan-
gential velocities is applied at a �uid–solid interface and continuity of stress at a free-surface
[23]. On the free boundary �fs, considering an appropriate amount of surface-tension, we
impose the dynamic and kinematic boundary conditions outlined below:
The dynamic boundary condition is given viz.

�:n= − (pext + �(R−1
1 + R−1

2 )):n (30)

Here, � is the Newtonian Cauchy-stress tensor, de�ned as

�ij= − (pTij + 2�0dij) (31)

where, �, n, d and pext are the surface tension coe�cient, outward unit normal vector to
the boundary @�fs, rate-of-deformation tensor and atmospheric pressure, respectively. R1 and
R2 are the principal radii of curvature of the interface [24, 25], de�ned functionally through
free-surface representation h(z; t),

R1 =
[
1 + (@h=@z)2

@2h=@z2

]3=2
; R2 = − h

[
1 +

(
@h
@z

)]1=2
(32)

The kinematic boundary condition is taken as follows. In order to �nd the eventual position
of the free-surface, we use

@h
@t
= ur − uz

@h
@z

; ∀t (33)

In order to retain, smoothness and consistency in surface pro�les a Crank–Nicolson treat-
ment (with 	=0:5) is introduced in discretizing the second-term of r.h.s. of Equation (33),
implemented as

@htn+1

@t
= ut

r − ut
z

[(
@h
@z

)tn−1

+ 	

{(
@h
@z

)tn

−
(
@h
@z

)tn−1}]
(34)

where 06	61. With 	=1, equation is recovered, to explicit, one-backstep interpretation
between tn+1 and tn. For more detail the reader is referred to Reference [20]. Since the �ow
is incompressible, the free-surface location must satisfy volume conservation.
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The kinematic iteration is a natural, separate solution stage for transient free-surface prob-
lems. From some initial �ow �eld and domain, the free-surface and moving-boundary is
advanced, according to the �ow on such boundaries. An updated �ow �eld is calculated and
the boundaries advance oncemore, consecutively. At each step the mesh is adjusted so as
to comply with kinematic conditions (34), that match the motion of the moving boundaries
to the velocity �eld. The kinematic iteration can be applied to solve a fully-transient prob-
lem, or simply to solve a steady state problem. Due to the underpinning boundary conditions
and the presence of the free surface, the mesh experiences large deformation both radially
(near the interface of the free-surface and the top-plate) and axially. Uniform remeshing
is performed radially. For axial remeshing, where the mesh undergoes large stretching, a
modi�ed logarithmic (log-sec) remeshing algorithm has been employed, see Reference [26]
for details.

6.1. Results and discussion: �lament-stretching

6.1.1. Pure FD-schemes. To avoid ambiguity, we begin by discarding mdc-contributions, thus
taking �mdc =0. This implies only upwinding constructs are employed (consistently) upon �ux
(RT ) and source (QT ) terms, as be�ts a highly extension-dominated problem. We focus our
attention almost entirely upon the distribution of total stress (Tzz) and extra-stress (�zz) along
the centreline (Z =L(t)=2, see Figure 8). For this problem, total stress is the quantity of
physical interest, whilst extra stress is the primary variable computed within the FV-scheme.
Here, two cell-vertex �uctuation distribution schemes of interest, Ldb (linear and linearity
preserving, second order for steady problems) and Lax–Wendro� (linear, central-scheme with
dissipation term, second order) are considered. Such FD-schemes are applied consistently to
both �ux and source terms as in Equation (10). Along the centreline at Z =L(t)=2, and for
di�erent �nite volume implementations, Plate 1 contrasts the variation of total stress (Tzz),
whilst Plate 2 conveys the same in extra-stress (�zz).
With �lament stretching, when the plates move apart, free-surface deformation increases,

and velocity gradient (Dzz) at the mid-point of the free-surface rises sharply towards the free-
surface. Hence, the total stress (Tzz), elevates in a similar fashion, along the horizontal central
axis and a boundary layer develops, as reported in Reference [19]. Due to the presence of
the boundary layer, the value of stress drops slightly at the interface node n1 (see Figures 8
and 9) on the free-surface, when compared to its immediate neighbouring vicinity. In Plate
1, the resulting trend illustrated via the Lax-scheme agrees well with that reported by Yao
and McKinley [19]. In addition, a comparison of DZZ computed with various FV schemes
is depicted in Plate 4, contrasted against suitably scaled results from the literature [19]. For
this problem, the aspect ratio of the �lament is chosen as 1

3 and We=0:5. It is apparent that
the pure FD Lax-scheme outperforms the Ldb and CT3-schemes. In Plate 1, the Ldb-scheme
almost replicates that of Lax, albeit with a slight overshoot at the left-hand end of the plot
where r=0, and undershoot at the mid-point of the free-surface (node n1), at the right-hand
end of the plot. With the Ldb-scheme, the value of extra-stress at node n1 vanishes (see Plate
2). The reason for the relatively poor performance of the Ldb-scheme can be attributed to the
prevailing direction of the radial velocity pro�le, Ur . In our previous study on viscous �ows
[20], we have shown that the �ow-�eld at small Hencky-strains is dominated by the radial
velocity, Ur , which is directed inwards at all times. Figure 9 displays the velocity �eld for
the half-length model. In Figure 9(a), the velocity-vectors acting upon the free-surface nodes
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Figure 9. Velocity �eld: half-length model: (a) �=0:32; and (b) �=1:6, normal and zoomed
views, Newtonian liquid-bridge.

point inwards. Therefore, due to Equation (10), and with the use of a pure upwinding scheme
(such as Ldb), it is apparent that nodes on free-surface boundaries will receive no extra-stress
contribution whatsoever. This is true for mid-plane node (n1) at all times, where vanishing
axial velocity is imposed in the half-length model problem, see Figure 9(b). This state of
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Figure 10. Velocity �eld: full-length model: (a) �=0:32; and (b) �=1:6, normal and zoomed
views, Newtonian liquid-bridge.

a�airs applies equally to the full-length model, see Figure 10(a). The transient evolution
of the extra-stress (�zz) at the crucial node n1, the mid-point node of the free-surface, is
demonstrated in Plate 3a. This �gure charts the temporal development of stress over Hencky
strain levels from �=0 to 0.2. We observe that with the Ldb-scheme, the value of extra-stress
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at node n1, does not shift away from zero. Such discrepancy can be suppressed with recourse
to the Lax FD-scheme (Equation (22)), which imparts appropriate contributions to node n1,
as desired. The transient development of extra-stress for an interior node n2 is depicted in
Plate 3b. This node is about half-way along the free-surface mid-plane from node n1 (on
axis Z =L(t)=2, see Figure 9(a)). For this node, the Ldb-result mimics the Lax-result closely
throughout, and underlines the fact that discrepancy creeps in through upwinding treatment
localised to the free-surface interface.

6.1.2. Hybrid FD-schemes. Following our approach for model problems, we have extended
our study to include various update strategies of pure FD-form, yet with hybrid combina-
tions. Equation (10) is segregated to allow one FD-scheme to apply to RT , with a sec-
ond acting on QT ; so for example, Psi(RT )=Ldb(QT ); Psi(RT )=Lax(QT ); Lax(RT )=Psi(QT );
Lax(RT )=Ldb(QT ); and Ldb(RT )=Lax(QT ). Incorporated within Plates 1–3, we are able to
contrast results between pure and various hybrid combinations. As above, the transient devel-
opment of extra-stress (�zz) at the free-surface mid-plane node (n1) with various schemes is
illustrated in Plate 3(a). A similar plot is provided in Plate 3(b) at internal node (n2) along
the same axis where Z =L(t)=2. It is of interest to note that apart from minor oscillations
generated by the Lax(RT )=Psi(QT ) combination, all �uctuation distribution schemes behave
similarly in the interior region of this central plane line, both in space and time (see Plate
2(a) and Plate 3(b)). Discrepancies arise close to the regions at the boundaries (see Plate
2a and Plate 3a). When �ux terms are computed via the PSI-scheme and source terms with
a Lax-stencil, the solution mimics the consistent pure-FD Lax-scheme, as illustrated in Plate
1(a) and Plate 2(a). In a similar manner, Psi on �ux terms and Ldb on source terms, replicates
the results from the pure-FD Ldb-scheme. The key element here appears to be the selection
of scheme for the source term (QT ). When the Psi-scheme is invoked for source terms, it
introduces discretization error and oscillations result. This is due to the positive character
of the Psi-scheme, which may induce fresh extrema in the solution (see above). From the
transient development of extra-stress (�zz) at node n1 in Plate 3(a), it is conspicuous that in
order to have some stress contribution to the boundary node n1, the scheme of choice on QT

is that of Lax.
The scheme applied on �ux is also important. When one compares Lax(RT )=Lax(QT ) ver-

sus Ldb(RT )=Lax(QT ) in Plate 3(a), the Ldb-version on RT , generates negatives values for
extra-stress at the outset and through the Lax-form on QT , the node subsequently gathers
contribution in time (solution undershoot results). Note that, with Ldb alone on RT and QT ,
no contribution to the node n1 is delivered. It would appear that in the region near the free-
surface, both �ux and source terms are of comparable strength, and the Ldb-scheme when
used on either �ux or source, degrades the solution. In contrast, the Psi on RT with Lax on QT ,
replicates the solution exactly of Lax(RT )=Lax(QT ). So positivity via Psi does not detract from
RT -treatment, once Lax is imposed on QT , and yields high precision results in contrast to Ldb.
This proves the point made earlier on model problems, the essential contribution of positivity
upon �ux terms, here illustrated through time accuracy (as true for Lax-RT implementation,
also). Furthermore, note that once Lax (QT ) is replaced with Ldb(QT ), the Psi(RT ) in�uence
is dominated by the source e�ect, to the extent that there is now no contribution to extra-
stress once again. Hence, pure upwinding performs poorly, on QT -terms. Alternatively, the
Lax-scheme performs better with QT -terms as it is designed to provide second-order accuracy
in time for purely convective �ows. One notes the structure of the Lax-scheme from Equation
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(22) and the perturbation form about the uniform 1
3 -weighting (hence, not purely upwinding

by de�nition).

6.1.3. Schemes with mdc-inclusion. Elsewhere for complex �ows, mdc-contributions have
been found to ensure numerical stability and accuracy for both steady and transient problems
[1, 11, 12]. With mdc inclusion, the scheme employed here is CT3, the more consistent form
with �mdc =1− �t [11]. In the present transient problem, from Plate 1(a) and Plate 2(b), it is
apparent that the inclusion of mdc degrades the solution. The inclusion of mdc-contributions
di�uses the solution (see Plate 2(b)). The discrepancy is greater at the free-surface and the
central region, where the velocity gradient Dzz, rises sharply from a constant value to a
peak, as demonstrated in Plate 4. In the regions where such sharp change in gradient occurs,
the strength of the source terms can be high and the �ow can be heavily convective in
nature. The adjustment in direction of �ow is apparent in the velocity vectors in Figure 9.
Hence, �uctuation distribution alone is superior to only mdc-inclusion. The inclusion of mdc
introduces signi�cant error in the transient stress evolution at the free-surface node n1, and
the internal node n2, as demonstrated in Plates 3(a) and 3(b). The value of extra-stress at
the free-surface node n1, is always negative with mdc-inclusion. Plate 1(b) contrasts Lax and
Ldb implementations, both with mdc-inclusion (CT3). Here, the linearity preserving property
of Ldb preserves greater smoothness in the solution. Nevertheless, mdc-inclusion is clearly
responsible for greater injection of error in the solution, irrespective of Lax or Ldb choice.
In addition, we have considered variants of the standard inconsistent (�RT + Qmdc) scheme,
and (�RT + �TQT + �mdcQmdc)-scheme. Here, RT is of Lax-form. The results are displayed in
Plate 1(b) and Plate 2(b), from which it is conspicuous that for this problem, any form of
mdc-inclusion, degrades the solution, irrespective of whether this is imparted to source terms
alone or with �ux terms, consistently or inconsistently. Curiously, the standard implementation
(S1) does provide the most damping to the interior solution pro�le in Plate 1(b).

7. CONCLUSION

For model problems, consistent formulation of the �ux and source terms has been found to
improve the accuracy to almost a third order. The precise choice of a FD-scheme for the �ux
and source terms is the key issue, in attaining such higher orders of accuracy. An inappropriate
choice would detract from this position. In shifting from structured to unstructured meshes,
one order of accuracy is lost. Through the study of various FV-scheme choices upon a well-
characterized model problem, we have been able to pinpoint some of the key issues that must
be addressed in accurately discretizing viscoelastic �ow equations. The principle issue has
been the consistent incorporation of non-trivial source terms within a standard FV cell-vertex
formulation. Overall, we conclude for model �ows, that consistency of approach is vital to
attain the higher levels of accuracy, be this on structured or unstructured meshes. Under
optimal selection, this may yield a third-order of accuracy on structure meshes and second
order on unstructured alternatives. In contrast, for standard approaches, such as inconsistent
scheme S1 (commonly quoted in the literature), we have illustrated how a signi�cant loss of
accuracy may be incurred. The consequence is restriction to �rst-order accuracy. This may
give rise to other, knock-on e�ects in the accurate resolution of more complex, highly-elastic
�ows.
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In the study of complex problems under �lament-stretching �ows, we have demonstrated
improved levels of accuracy achieved with a Lax-scheme. This is so, in contrast to a counter-
part Ldb-implementation, reported at small Hencky-strain levels. Here, we have been able to
isolate the shortcomings of these upwinding schemes, whilst dealing with such transient free-
surface problems. We observe that the velocity-�eld in these �lament-stretching �ows with
liquid-bridges imposes certain restrictions on the upwinding scheme approximations for these
to perform well in the presence of free-surfaces. An optimal choice has been proposed, hav-
ing contrasted results for pure �uctuation distribution schemes, various hybrid combinations,
and with mdc-inclusion. We summarise our main conclusions. First, mdc-inclusion is not rec-
ommended for such transient extension-dominated problems with contact-line=interfaces, as it
degrades accuracy. High accuracy is achieved via the use of the second-order Lax-scheme. The
optimal choice for such transient contact-line=interface problems is Lax on QT ; on RT , Lax or
Psi. Application of positive schemes on QT degrades the solution for both model and complex
problems. We have been able to achieve a high degree of precision on velocity gradients with
pointwise estimation, even accommodating contact-line=interfaces. The results obtained with
the optimum scheme, agree well with counterpart �nite element solutions available in the
open literature.
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Plate 1. Total stress Tzz , along centre-line Z =L(t)=2, We=4, initial aspect ratio ∧0 = 1
3 : (a) various

FD-schemes; and (b) mdc-inclusion.
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Plate 2. Extra-stress Tzz along centre-line at Z =L(t)=2, We=4, initial aspect ratio ∧0 = 1
3 : (a) pure and

hybrid �uctuation distribution FV- schemes; and (b) mdc-inclusion.
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Plate 3. Transient development of extra-stress �zz , �=0 to 0.2: (a) node n1; and (b) node n2.
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